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Life-threatening “breakthrough” cases of critical COVID-19 are attributed to poor or waning antibody (Ab) 
response to SARS-CoV-2 vaccines in individuals already at risk. Preexisting auto-Abs neutralizing type I IFNs 
underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; their contribution to 
hypoxemic breakthrough cases in vaccinated people is unknown. We studied a cohort of 48 individuals (aged 20 
to 86 years) who received two doses of a messenger RNA (mRNA) vaccine and developed a breakthrough infec-
tion with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Ab levels to the vaccine, neutralization 
of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known 
deficiency of B cell immunity and a normal Ab response to the vaccine. Among them, 10 (24%) had auto-Abs neu-
tralizing type I IFNs (aged 43 to 86 years). Eight of these 10 patients had auto-Abs neutralizing both IFN-2 
and IFN-, whereas two neutralized IFN- only. No patient neutralized IFN-. Seven neutralized type I IFNs at 
10 ng/ml and three at 100 pg/ml only. Seven patients neutralized SARS-CoV-2 D614G and Delta efficiently, whereas 
one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only type I IFNs at 
100 pg/ml neutralized both D614G and Delta less efficiently. Despite two mRNA vaccine inoculations and the 
presence of circulating Abs capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a 
notable proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly 
vulnerable population.

INTRODUCTION
Since the start of the coronavirus disease 19 (COVID-19) pandemic 
(1), caused by severe respiratory syndrome coronavirus 2 (SARS-
CoV-2), at least 6 million people have died from COVID-19 (2). Al-
though most of the infected individuals recover, it remains important 
to identify the factors that put patients at greater risk for severe 

disease. Age is the major epidemiological risk factor of death from 
pneumonia, the risk doubling every 5 years of age from childhood 
onward (3–5). Patients with inborn errors (IEs) of immunity af-
fecting the production of, and/or response to, type I interferons 
(IFNs) are prone to critical COVID-19 pneumonia (6–12). These 
findings established the crucial role of type I IFNs in fending off 
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SARS-CoV-2 (13). Moreover, autoantibodies (auto-Abs) neutralizing 
high concentrations (10 ng/ml in plasma diluted 1/10) of IFN-2 
and/or IFN- were found in at least 10% of individuals with critical 
COVID-19 (14), an observation replicated in various regions of the 
world (15–33). Patients with autoimmune polyendocrine syndrome 
type I (APS-1) harbor these neutralizing auto-Abs from early childhood 

and are at high risk of life-threatening COVID-19 (24, 25). More-
over, at least 13.6% of unvaccinated patients with critical COVID-19 
had auto-Abs neutralizing lower, more physiological concentrations 
(100 pg/ml in plasma diluted 1/10) of IFN-2 and/or IFN-, whereas 
auto-Abs neutralizing IFN- were found in another 1% of patients 
(34). In more than 34,000 uninfected individuals aged 18 to 100 years, 
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the prevalence of auto-Abs neutralizing IFN-2 or IFN- at 10 ng/ml 
(or 100 pg/ml) increased significantly with age, with 0.17% (1.1%) 
of individuals positive for these auto-Abs under 70 years old and 
more than 1.4% (4.4%) positive over 70 years old, consistent with the 
higher risk of life-threatening COVID-19 in the elderly population 
(34). These auto-Abs thus precede infection and are strong determi-
nants of critical disease, only second to age among common risk 
factors (35). The odds ratios (ORs) of critical disease are the highest 
in individuals with auto-Abs neutralizing both IFN-2 and IFN- 
(10 ng/ml; OR = 67; P = 7.8 × 10−13) (34, 35).

RNA vaccines are highly effective at protecting against severe 
COVID-19 pneumonia (36, 37). Despite their efficacy, “breakthrough” 
cases, i.e., individuals diagnosed with SARS-CoV-2 infection de-
spite being vaccinated with two doses, have been reported worldwide 
(38, 39). Most breakthrough cases are asymptomatic or mild (38), but 
in rare cases, they are severe, critical, or even fatal (40, 41). It is thought 
that these severe or critical cases can result from a pathologically 
deficient (including inherited and acquired deficiencies of adaptive 
immunity) or a physiologically waning Ab response to the vaccine 
(especially in aging individuals). Incomplete protection from viral 
genotypes with vaccine-resilient mutations (such as Delta or Omicron) 
can also result in insufficient viral neutralization in vivo, in individ-
uals otherwise at risk of hypoxemic pneumonia (for example, due 
to their age, sex, comorbidity, rare or common genetic variant, or 
auto-Abs to type I IFNs) (13). In other words, breakthrough critical 
cases are thought to be due to a poor Ab response to the vaccine in 
at-risk individuals (42). However, the human genetic and immuno-
logical determinants of critical breakthrough cases remain unclear, 
especially in patients with normal Ab response to the vaccine. More-
over, the biological and clinical efficacy of RNA vaccines in patients 
with known genetic or immunological determinants of critical 
COVID-19 pneumonia, i.e., in patients with IE of, or auto-Abs to, 
type I IFNs, is not clear. With the COVID Human Genetic Effort 
(CHGE; www.covidhge.com), we recruited and tested patients with 
breakthrough COVID-19 and hypoxemic pneumonia. We tested the 
double hypothesis that some of these breakthrough cases of severe 
or critical COVID-19 pneumonia may have a normal Ab response 
to the vaccine and may also harbor auto-Abs to type I IFNs.

RESULTS
Forty-two of 48 patients have normal Ab response to the vaccine
Forty-eight patients who suffered from hypoxemic COVID-19 pneu-
monia (severe or critical), despite having received two doses of mRNA 
vaccine at least 2 weeks and up to 16 weeks (mean, 8 weeks) before 
infection, were recruited from six countries (France, Greece, North 
Macedonia, Turkey, Ukraine, and United States). All CHGE patients 
whose samples were available were recruited; they had not been pre-
viously infected with SARS-CoV-2, as attested by the clinical informa-
tion collected and/or a negative serology at the time of vaccination 
or performed at the onset of disease. These patients were aged 20 to 
86 years (mean, 53 years old) and included 34 men and 14 women. 
Five of them had a known deficiency of B cell immunity [immuno-
suppressive therapy in three individuals, HIV infection in one indi-
vidual, and lymphoma with chimeric antigen receptor T cell (CAR-T) 
treatment in one individual]. We tested the 48 patients for their 
Ab response to SARS-CoV-2 mRNA vaccines. We found that 1 of 
the 43 patients did not have a known B cell deficiency but had an 
insufficient Ab response to the vaccine [defined as within 3 SDs 

from the mean of unvaccinated controls; Fig. 1A (arrow) and fig. 
S1A]. The other patients had levels of Ab response to the vaccine 
similar to those of vaccinated controls (t test, table S1). Three of the 
five patients with a known B cell deficiency had a normal Ab re-
sponse (above 3 SDs; Fig. 1A). Overall, 42 patients had both no–B 
cell deficiency and a normal Ab response to the vaccine and thus 
were further investigated.

Auto-Abs against type I IFNs in 10 of 42 patients with normal 
Ab response to the vaccine
We next tested all the samples from the 42 patients without known 
B cell deficiency and with a normal Ab response to the mRNA vac-
cine for immunoglobulin G (IgG) auto-Ab to type I IFN levels using 
a radioligand binding assay (RLBA). Seven of the 42 patients tested 
had elevated titers of anti–IFN-2 auto-Abs in RLBA (Fig. 1B). We 
then tested all of these samples for their neutralization activity against 
IFN-2 and IFN- at 10 ng/ml and 100 pg/ml and IFN- at 10 ng/ml. 
We identified 10 (24%) patients with IgG auto-Abs neutralizing 
IFN-2 and/or IFN-, as did the APS-1–positive controls, whereas 
the healthy controls did not (Fig. 1, C and D). Patients with neutral-
izing auto-Abs had lower luciferase induction (below threshold in 
dotted lines). All of these patients had normal anti–SARS-CoV-2 
Spike Ab response to the vaccine (fig. S1, D and E). In contrast, 
auto-Abs to type I IFN were not found in any of the six patients 
previously excluded because of a known B cell immunodeficiency 
(n = 5) or an insufficient Ab response to the vaccine (n = 1; fig. S1, 
B and C). Eight of these 10 individuals (80%) had circulating auto-
Abs neutralizing both IFN-2 and IFN-, whereas two neutralized 
IFN- only (20%), and none neutralized IFN- (Fig. 1, C and D). In 
addition, plasma from seven patients (diluted 1/10) neutralized a 
high concentration (10 ng/ml) of type I IFNs (70%), whereas three 
neutralized only the lower, more physiological dose (100 pg/ml) of 
type I IFNs (including the two neutralizing IFN- only; 30%; Fig. 1, 
C and D). Overall, auto-Abs neutralizing IFN-2 and/or IFN- 
were found at the onset of disease in 10 of the 42 patients (24%) with 
breakthrough COVID-19 who suffered from hypoxemic pneumonia 
despite having a normal Ab response to an mRNA vaccine.

Demographic, clinical, and virological features of the  
10 patients with auto-Abs to type I IFNs
The patients with hypoxemic breakthrough COVID-19 pneumonia 
and auto-Abs neutralizing type I IFNs included three women and 
seven men. They were aged 43 to 86 years old (mean, 75 years old; 
Table 1). All were of European ancestry, except one Cambodian, and 
they originated from France (n = 3), Greece (n = 5), and the United 
States (n = 2). None of these individuals reported having previously 
suffered from other severe viral infections. All 10 patients were hos-
pitalized during COVID-19 for oxygen supplementation, including 
five hospitalized in an intensive care unit (ICU) who received me-
chanical ventilation and one who received nasal oxygen high flow 
therapy but was recused of ICU because of age (P8). All of them sur-
vived. All presented with bilateral COVID-19 pneumonia and had a 
positive SARS-CoV-2 reverse transcription polymerase chain reac-
tion (PCR) in the respiratory tract. The SARS-CoV-2 variants in-
volved were unknown but most likely to be Delta variant, given the 
epidemiology at the location and time of sampling (i.e., before 
October 2021 for all samples tested). The patients had been vaccinated 
2 to 16 weeks before the diagnosis of COVID-19. One individual 
(P2) had at least two autoimmune conditions (myasthenia gravis and 
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Hashimoto’s thyroiditis), whereas another (P10) had APS-1. Myasthenia 
gravis and APS-1 are associated with auto-Abs to type I IFNs which 
had, however, not been measured before COVID-19 in these two in-
dividuals. Last, one individual (P1) belonged to a large family whose 
members had all been fully vaccinated, and many were infected at 
the same time as he was (43). He was, nevertheless, the only one to 
suffer from critical disease and also the only one to harbor neutralizing 
auto-Abs to type I IFNs. None of the 10 patients died of COVID-19, 
whereas more than 20% of unvaccinated individuals who died of 
COVID-19 harbored neutralizing auto-Abs (34) and 5 to 10% of un-
vaccinated patients with these auto-Abs died of COVID-19 (35), 

suggesting that, although insufficient to prevent hypoxemic pneumonia, 
vaccination may have protected these patients from a fatal outcome. 
Overall, auto-Abs to type I IFNs can underlie hypoxemic breakthrough 
COVID-19 infection in previously healthy individuals who developed 
normal Ab responses after SARS-CoV-2 mRNA vaccination.

Abs neutralizing SARS-CoV-2 in all 10 patients
To further test the hypothesis that the hypoxemic breakthrough cases 
were driven by the auto-Abs neutralizing type I IFNs and not by an 
insufficient Ab response to the vaccine, we assessed the neutralizing 
activity in all 10 patients’ plasma against SARS-CoV-2 (Table 2). Although 

A

C D

B

Fig. 1. Neutralizing auto-Abs against IFN-2 and IFN- in patients with hypoxemic breakthrough COVID-19 despite a normal serological response to SARS-CoV-2 
mRNA vaccine. (A) SARS-CoV-2 serology against spike (S) protein and RBD in hypoxemic breakthrough COVID-19 (n = 43), patients with immune suppression (n = 5), 
unvaccinated controls (n = 12), and vaccinated and uninfected healthy controls (n = 11). Mean fluorescence intensity is shown. The orange dots correspond to the 10 indi-
viduals with auto-Abs neutralizing type I IFNs. Empty circles represent either Spike or RBD serology to outline the highest value for one patient. The arrow indicates the 
patient without B cell deficiency but with an insufficient Ab response to the virus. (B) RLBA results for auto-Abs against IFN-2 in patients with hypoxemic breakthrough 
COVID-19 pneumonia without immune suppression or low Ab response to the vaccine (n = 42), uninfected controls (N = 96), and uninfected APS-1 patients (n = 6). 
(C) Neutralization of IFN-2, IFN-, or IFN- (10 ng/ml) in the presence of plasma 1/10 from patients with hypoxemic breakthrough COVID-19 pneumonia with a good Ab 
response to the vaccine (n = 42). Relative luciferase activity is shown (ISRE dual luciferase activity, with normalization against Renilla luciferase activity) after stimulation 
with IFN-2 or IFN- (10 ng/ml) in the presence of plasma 1/10. RLA, relative luciferase activity. (D) Neutralization of IFN-2 or IFN- (100 pg/ml) in the presence of plasma 
1/10 from patients with hypoxemic breakthrough COVID-19 pneumonia with a good Ab response to the vaccine (n = 42).
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we did not collect blood samples before COVID-19 diagnosis, we 
collected them in the first 3 days of hospitalization. Because we did 
not determine with which viral strain the patients had been infected, 
we performed the neutralization assay with pseudoviruses repre-
senting both the previously globally dominant D614G strain and 
the Delta variant (B.1.617.2), which was dominant when and where 
the patients were infected. We compared the patients’ results with 
the neutralization titers of healthy vaccinated donors 2 to 8 weeks 
after the second dose of the mRNA vaccine. All 10 individuals 
tested had a neutralization capacity when compared with the healthy 
vaccinated controls, although it was slightly reduced for two indi-
viduals (P4 and P6) for the D614G strain and for three individuals 
(P1, P4, and P6) for the Delta variant (Fig. 2, A and B, and fig. S1, D 
and E). Although P1 neutralized type I IFNs at 10 ng/ml, P4 and P6 
only neutralized low concentrations of type I IFNs. Specifically, P4 
neutralized both IFN-2 and IFN- but only at 100 pg/ml, whereas 
P6 neutralized only IFN- at 100 pg/ml. This observation suggests 
that in patients whose auto-Abs neutralized only low concentra-
tions of type I IFNs, suboptimal Ab response to the vaccine may 
have also contributed to hypoxemic pneumonia. Overall, this sug-
gested that hypoxemic COVID-19 pneumonia can occur in individ-
uals with a normal Ab response to two doses of mRNA vaccine (42 
of 48 patients tested). Moreover, in about 20% of the breakthrough 
cases (10 of 42 cases), hypoxemic pneumonia was probably due to 
auto-Abs neutralizing IFN-2 and/or IFN- (and typically at high 
concentration of both IFNs). Last, in 70% of the latter cases (7 of 
10 cases), plasma neutralization of two viral strains was normal, 
whereas 1 had a lower neutralization against the Delta strain, and 
the remaining 2 had a subnormal neutralization of both viral strains 
(D614G and Delta).

DISCUSSION
The pathogenesis of life-threatening COVID-19 pneumonia in-
volves two steps, with a deficiency of respiratory type I IFN im-
munity in the first days of infection resulting in viral spread, which 
triggers excessive systemic and pulmonary inflammation (13, 44, 45). 
The vaccination of billions of individuals has efficiently reduced 
the number of critical cases. Nevertheless, breakthrough hypoxemic 
COVID-19 pneumonia can occur in previously healthy individuals 
who are vaccinated against SARS-CoV-2; this is assumed to be due 
to a poor Ab response to the vaccine (42). Our findings suggest that 
most breakthrough hypoxemic cases (42 of 48 tested) did not have 
a known B cell deficiency and also had a normal Ab response to the 
vaccine, although no samples were available before SARS-CoV-2 in-
fection. Moreover, we showed that about 20% (10 of 42) of these 
breakthrough cases with normal Ab response to the vaccine also 
carried auto-Abs neutralizing IFN-2 and/or IFN- (10 ng/ml for 
7 patients and 100 pg/ml for 3 patients). In addition, the plasma of 
7 of the 10 patients with auto-Abs to type I IFNs efficiently neutral-
ized SARS-CoV-2 in vitro, whereas 1 had a lower neutralization 
against the Delta strain, and plasma from the remaining 2 neutralized 
the two viral strains tested suboptimally. Both patients had auto-Abs 
neutralizing only type I IFNs at 100 pg/ml. Plasma (diluted 1/10) from 
7 of the 10 individuals with these auto-Abs neutralized a high con-
centration (10 ng/ml) of both IFN-2 and IFN-, consistent with un-
vaccinated individuals carrying such auto-Abs being at the greatest 
risk of critical COVID-19 among individuals carrying any combina-
tions of auto-Abs to type I IFNs (13, 34, 35). The proportion of individ-
uals with hypoxemic COVID-19 due to neutralizing both IFN-2 
and IFN- at the high dose (10 ng/ml) is even higher in the break-
through cohort reported here (7 of 42; 16%) than in the previously 

Table 1. Clinical and demographic information of the 10 patients with hypoxemic breakthrough COVID-19 infection and auto-Abs neutralizing type I 
IFNs. 00HTN, hypertension; AF, atrial fibrillation. 

Patient Origin Residence Sex Age Comorbidities Vaccine 
source

Dose 
number

Time of 
disease post 
vaccination 

(weeks)
ICU Classification Outcome

P1 American United States M 80 Diabetes, asthma Pfizer 2 2 Yes Critical Alive

P2 Greek Greece F 82 HTN, myasthenia 
gravis, Hashimoto, 

dyslipidemia

Pfizer 2 4 Yes Critical Alive

P3 Greek Greece M 73 HTN, diabetes, 
dyslipidemia, 

glaucoma

Pfizer 2 2 Yes Critical Alive

P4 Greek Greece M 86 HTN, diabetes, 
dyslipidemia, AF, 
benign prostate 

hyperplasia, 
Parkinson’s

Pfizer 2 12 Yes Critical Alive

P5 Greek Greece M 73 Diabetes, coronary 
heart disease

Pfizer 2 3 No Severe Alive

P6 Greek Greece F 77 HTN, diabetes, 
dyslipidemia

Pfizer 2 16 No Severe Alive

P7 Cambodian France M 71 HTN Pfizer 2 15 Yes Critical Alive

P8 French France F 86 NA Pfizer 2 6 No Critical Alive

P9 American United States M 80 NA Pfizer 2 2 No Critical Alive

P10 French France M 43 APS-1 Pfizer 2 2 No Severe Alive
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described unvaccinated cohort (175 of 3136; 7.1%; P = 0.015) (34). 
Two of the three patients neutralizing only type I IFNs at 100 pg/ml 
also had a slightly diminished neutralization capacity against SARS-
CoV-2, suggesting in these individuals a combination of two fac-
tors: the presence of auto-Abs to low concentration of type I IFNs 
and a suboptimal Ab response to the vaccine.

Nevertheless, as we were not able to identify and study auto-Ab–
positive individuals who were vaccinated and efficiently protected 
against severe infection, we cannot estimate the percentage of 
breakthrough cases with hypoxemic pneumonia in individuals with 
auto-Abs neutralizing type I IFNs infected with SARS-CoV-2. Until 
70 years old, the proportion of individuals from the general popula-
tion sampled before the pandemic that carry auto-Abs against both 
IFN-2 and IFN- is 0.02 and 0.03% for the neutralization of 10 ng/ml 
and 100 pg/ml, respectively, whereas it reaches 0.6 and 1.6% for those 
over 70 years old. Because mRNA vaccines have high efficacy to 
prevent critical pneumonia, it is probable that most patients with 
auto-Abs against type I IFNs benefit from vaccination, although the 
protection might not be sufficient in individuals neutralizing high 
concentrations of multiple type I IFNs. It is also not unreasonable to 
speculate that, despite an infection with a vaccine-covered viral vari-
ant and a normal Ab response to the vaccine, a small proportion of 
the patients with such auto-Abs might not be fully protected by the 
vaccine, especially if they are infected with a high viral inoculum. By 
inference from previous studies, the auto-Abs of the eight patients 
neutralizing IFN-2 also probably neutralize the 13 types of IFN- 
(14, 24, 34, 46). These findings suggest that a potent postvaccine 
humoral immunity can be insufficient to fight SARS-CoV-2 infec-
tion, especially in patients with auto-Abs neutralizing both IFN-2 
and IFN- and even more so at high concentration.

Our results here suggest that it may be beneficial to test for auto-
Abs to type I IFN in vaccinated patients diagnosed with breakthrough 
COVID-19 pneumonia of varying severity and to treat if patients are 

auto-Ab positive. Testing uninfected people, including vaccinated in-
dividuals, may also be considered, especially in those over 70 years 
old given the high prevalence of auto-Abs to type I IFNs in this popu-
lation (>4%) and their lower global type I IFN immunity (13). One 
of the 10 patients suffered from APS-1 and thus most likely harbored 
these auto-Abs since early childhood (24, 25, 47), whereas another 
patient had myasthenia gravis, which is also commonly associated 
with these auto-Abs (48). Testing patients with conditions known 
to be associated with these auto-Abs may benefit these patients. All 
individuals with auto-Abs to type I IFNs might benefit not only from 
vaccine boosters but perhaps also from recurrent vaccinations. Pro-
spective studies assessing vaccine-induced immunity before infection 

A B

Fig. 2. Neutralization titers against SARS-CoV-2 in the patients with auto-Abs against type I IFNs. Neutralization titers against SARS-CoV-2 for healthy vaccinated 
donors 2 to 8 weeks after the second dose of mRNA vaccine (n = 11) and patients with hypoxemic breakthrough COVID-19 pneumonia and auto-Abs to type I IFNs (n = 10). 
The dashed line shows the geometric mean of healthy donor titers; the box shows interquartile range, and the shaded region is the full range. (A) Neutralization assay 
performed with pseudoviruses representing the D614G strain and (B) the Delta variant (B.1.617.2).

Table 2. Auto-Abs neutralized in the 10 patients. 1, neutralizing; 0, 
non-neutralizing. 

Patient
Anti–

IFN-2 
auto-Abs 
(10 ng/ml)

Anti–
IFN- 

auto-Abs 
(10 ng/ml)

Anti–
IFN-, 

auto-Abs 
(10 ng/ml)

Anti–
IFN-2 

auto-Abs 
(100 pg/ml)

Anti–
IFN-, 

auto-Abs 
(100 pg/ml)

P1 1 0 1 1 1

P2 1 0 0 1 1

P3 1 0 0 1 1

P4 0 0 0 0 1

P5 1 0 1 1 1

P6 0 0 0 1 1

P7 0 0 0 0 1

P8 1 0 1 1 1

P9 1 0 1 1 1

P10 1 0 1 1 1
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in patients with auto-Abs to type I IFNs would be informative, for 
example, in the setting of vaccine trials. Systematic screening at hospital 
admission for auto-Abs to type I IFNs would also be of help for the 
management of vaccinated or unvaccinated individuals with hypo
xemic pneumonia. Monoclonal Abs neutralizing the virus could also 
be administered promptly (49), as shown for an IFN regulatory factor 
9–deficient patient (50), especially in patients with the highest titers 
of auto-Abs to type I IFNs. Antiviral compounds, such as remdesivir 
(51, 52), molnupiravir (53, 54), or nirmatrelvir + rintonavir may 
also benefit these patients if administered early in the course of in-
fection. Conversely, in ambulatory patients with these auto-Abs, 
early recombinant IFN- therapy may also be considered to prevent 
the development of hypoxemic pneumonia (55). In sum, our find-
ings indicate that auto-Abs to type I IFNs are a susceptibility factor 
for a severe clinical course of COVID-19, even in vaccinated indi-
viduals with a breakthrough infection.

MATERIALS AND METHODS
Study design
We enrolled 48 patients with proven hypoxemic COVID-19 pneu-
monia, 12 unvaccinated controls, and 11 vaccinated controls from 
six countries in this study. We collected plasma or serum samples 
from all of these individuals to test for the presence of IgG Abs 
against SARS-CoV-2 and auto-Abs to type I IFNs by immunoassay. 
All individuals were recruited according to protocols approved by 
local institutional review boards.

COVID-19 classification
The severity of COVID-19 was assessed for each patient as follows 
(6, 14): “Critical COVID-19 pneumonia” was defined as pneumonia 
developing in patients with critical disease, whether pulmonary, with 
high-flow oxygen, mechanical ventilation (continuous positive air-
way pressure, bilevel positive airway pressure, and intubation), septic 
shock, or with damage to any other organ requiring admission to the 
ICU. “Severe COVID-19” was defined as pneumonia developing in 
patients requiring low-flow oxygen (<6 liters/min). The controls were 
individuals infected with SARS-CoV-2 (as demonstrated by a positive 
PCR and/or serological test and/or displaying typical symptoms, such 
as anosmia/ageusia after exposure to a confirmed COVID-19 case) 
who remained asymptomatic or developed mild, self-healing, ambu-
latory disease with no evidence of pneumonia.

Statistics
For comparison of groups in Fig. 1A, a two-sided t test was per-
formed using a Python library (SciPy) for both Spike and receptor 
binding domain (RBD). Briefly, all groups were compared with the 
unvaccinated control group (n = 12). In addition, the group of auto-
Ab–positive breakthrough cases was compared with the group of 
auto-Ab–negative breakthrough cases.

Detection of anticytokine auto-Abs by a high-throughput 
automated enzyme-linked immunosorbent assay (Gyros)
Cytokines, either recombinant human (rh) IFN-2 (Miltenyi Biotec, 
reference number 130-108-984) or rhIFN- (Merck, reference num-
ber SRP3061), were first biotinylated with EZ-Link Sulfo-NHS-LC-
Biotin (Thermo Fisher Scientific, catalog number A39257), according 
to the manufacturer’s instructions, with a biotin-to-protein molar ratio 
of 1:12. The detection reagent contained a secondary Ab Alexa Fluor 

647 goat anti-human IgG (Thermo Fisher Scientific, reference num-
ber A21445) diluted in Rexip F (Gyros Protein Technologies, refer-
ence number P0004825; 1/500 dilution of the stock at 2 mg/ml to 
yield a final concentration of 4 g/ml). Phosphate-buffered saline 
with tween (PBS-T) (0.01%) and Gyros Wash buffer (Gyros Protein 
Technologies, reference number P0020087) were prepared according 
to the manufacturer’s instructions. Plasma or serum samples were 
then diluted 1/100 in 0.01% PBS-T and tested with the Bioaffy 1000 CD 
(Gyros Protein Technologies, reference number P0004253) and the 
Gyrolab xPand (Gyros Protein Technologies, reference number 
P0020520). Cleaning cycles were performed in 20% ethanol.

RLBA for anti–IFN-2 auto-Ab detection
A DNA plasmid containing full-length cDNA sequence with a Flag-
Myc tag (OriGene, #RC221091) was verified by Sanger sequencing 
and used as template in T7 promoter–based in vitro transcription/
translation reactions (Promega, #L1170) using [35S]-methionine 
(PerkinElmer, #NEG709A). IFN-2 protein was column-purified 
using NAP-5 columns (GE Healthcare, #17-0853-01); incubated with 
2.5 l of serum, 2.5 l of plasma, or 1 l of anti-myc–positive control Ab 
(Cell Signaling Technology, #2272); and immunoprecipitated with 
Sephadex protein A/G beads (4:1 ratio; Sigma-Aldrich, #GE17-5280-02 
and #GE17-0618-05) in 96-well polyvinylidene difluoride filtra-
tion plates (Corning, #EK-680860). The radioactive counts [counts 
per minute (cpm)] of immunoprecipitated protein were quantified 
using a 96-well MicroBeta TriLux liquid scintillation plate reader 
(PerkinElmer). The Ab index for each sample was calculated as 
follows: (sample cpm value − mean blank cpm value)/(positive control 
Ab cpm value − mean blank cpm value). A positive signal was de-
fined as greater than 6 SDs above the mean of pre–COVID-19 blood 
bank noninflammatory controls.

Functional evaluation of anticytokine auto-Abs by luciferase 
reporter assays
The blocking activity of anti–IFN-2 and anti–IFN- auto-Abs was 
determined with a reporter luciferase activity. Briefly, human embry-
onic kidney 293T cells were transfected with a plasmid containing the 
Firefly luciferase gene under the control of the human ISRE promoter 
in the pGL4.45 backbone and a plasmid constitutively expressing 
Renilla luciferase for normalization (pRL-SV40). Cells were trans-
fected in the presence of the X-tremeGene9 transfection reagent 
(Sigma-Aldrich, reference number 6365779001) for 24 hours. Cells in 
Dulbecco’s modified Eagle medium (DMEM; Thermo Fisher Scien-
tific) supplemented with 2% fetal calf serum and 10% healthy control 
or patient serum/plasma (after inactivation at 56°C, for 20 min) were 
either left unstimulated or were stimulated for 16 hours at 37°C with 
IFN-2 (Miltenyi Biotec, reference number 130-108-984) and IFN- 
(Merck, reference number SRP3061) at 10 ng/ml or 100 pg/ml or with 
IFN- (Miltenyi Biotec, reference number: 130-107-888) at 10 ng/ml.  
Each sample was tested once for each cytokine and dose. Last, cells 
were lysed for 20 min at room temperature, and luciferase levels were 
measured with the Dual-Luciferase Reporter 1000 assay system 
(Promega, reference number E1980), according to the manufacturer’s 
protocol. Luminescence intensity was measured with a VICTOR X 
Multilabel Plate Reader (PerkinElmer Life Sciences, USA). Firefly 
luciferase activity values were normalized against Renilla luciferase 
activity values. These values were then normalized against the me-
dian induction level for non-neutralizing samples and expressed 
as a percentage. Samples were considered neutralizing if luciferase 
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induction, normalized against Renilla luciferase activity, was be-
low 15% of the median values for controls tested the same day.

SARS-CoV-2 serological studies
Serum collection
Control serum was collected under informed consent from healthy 
recipients of BNT162b2 vaccine [vaccines based on the Wuhan spike 
protein sequence], who were confirmed to have no prior SARS-
CoV-2 infection by anti–SARS-CoV-2 nucleocapsid (N protein) 
IgG assay (56). All serum samples were heat-inactivated at 56°C for 
30 min before neutralization experiments.
Luminex assay
Luminex immunoassays for SARS-CoV-2 serology studies were per-
formed as previously described using proteins from the Wuhan strain 
of the virus (57). Briefly, whole N protein, trimeric Spike ectodomain 
(residues 1 to 1213), and RBD (residues 328-533, all provided by J. Pak, 
Chan Zuckerberg Biohub) were each conjugated to a unique spectrally 
encoded bead using the manufacturer’s instructions (Luminex Anti-
body Coupling Kit; #40-50016) with 5 g of protein per 1 million 
beads. All beads were blocked overnight before use in PBS-T supple-
mented with 0.1% bovine serum albumin (BSA) and pooled on day 
of use. A total of 2000 to 2500 beads per ID were pooled per repli-
cate. Patient serum or plasma was incubated with beads at a final 
dilution of 1:250 for 1 hour, washed twice in PBS-T, stained with an 
anti-IgG (human) preconjugated to phycoerythrin (Thermo Scien-
tific, #12-4998-82) for 30 min at 1:2000, and then washed thrice in 
PBS-T. Primary incubations were done in PBS-T supplemented with 
2% nonfat milk, and secondary incubations were done in PBS-T. Beads 
were processed in duplicate in 96-well format and analyzed on a 
Luminex LX 200 cytometer. Median fluorescence intensity from 
each set of beads within each bead ID was retrieved directly from 
the LX200 after normalizing to the intra-assay negative controls 
(BSA-conjugated beads).
Pseudovirus production
SARS-CoV-2 pseudoviruses were generated using a previously de-
scribed recombinant vesicular stomatitis virus (VSV) expressing 
green fluorescent protein (GFP) in place of the VSV glycoprotein 
(rVSV∆G-GFP) (58). The SARS-CoV-2 spike gene bearing the 
D614G mutation or the set of mutations in the B.1.617.2/Delta vari-
ant (T19R, T95I, G142D, ∆157-158, L452R, T478K, P681R, D614G, 
and D950N) was cloned in a cytomegalovirus-driven expression 
vector and used to produce SARS-CoV-2 spike reporter pseudo
viruses. Pseudoviruses were titered on Huh7.5.1 cells overexpress-
ing angiotensin-converting enzyme 2 (ACE2) and transmembrane 
protease, serine 2 (TMPRSS2; gift of A. Puschnik) using GFP expres-
sion to measure the concentration of focus-forming units (ffu).
Pseudovirus neutralization experiments
Huh7.5.1-ACE2-TMPRSS2 cells were seeded in 96-well plates at a 
density of 7000 cells per well 1 day before pseudovirus inoculation. 
Cells were verified to be free of mycoplasma contamination with the 
MycoAlert Mycoplasma detection kit (Lonza). Serum samples were 
diluted into complete culture media (DMEM with 10% fetal bovine 
serum, 10 mM Hepes, 1× penicillin-streptomycin-glutamine) using 
the LabCyte Echo 525 liquid handler, and 1500 ffu of SARS-CoV-2 
pseudovirus was added to each well to reach final dilutions ranging 
from 1:20 to 1:10,240, including no-serum and no-pseudovirus con-
trols. Serum/pseudovirus mixtures were incubated at 37°C for 1 hour 
before being added directly to cells. Cells inoculated with serum/
pseudovirus mixtures were incubated at 37°C and 5% CO2 for 

24 hours and resuspended using 10× TrypLE Select (Gibco), and 
cell fluorescence was measured with the BD Celesta flow cytometer. 
All neutralization assays were repeated for a total of three indepen-
dent experiments, with each experiment containing two technical 
replicates for each condition. Flow cytometry data were analyzed 
with FlowJo to determine the percentage of cells transduced with 
pseudovirus (GFP-positive). Percent neutralization for each serum 
dilution was calculated by normalizing GFP-positive cell percentage 
to no-serum control wells. Fifty percent neutralization titers were 
calculated from 10-point response curves generated in GraphPad 
Prism 7 using four-parameter logistic regression.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/sciimmunol.abp8966
Materials and Methods
Table S1
Fig. S1
Data file S1

View/request a protocol for this paper from Bio-protocol.
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